
RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ⌘ ri(C) and x ⌘ cl(C), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).
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• Proof of case where x ⌘ C: See the figure.

• Proof of case where x ⌘/ C: Take sequence
{xk} ⌦ C with xk → x. Argue as in the figure.
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Figure 4: Convex hulls of sets of points

4 Convex sets

Convex sets are defined via affine combinations of two elements with nonnegative coefficients.

Definition 4.1. A subset X ⊂ A of a real vector space or a real affine space is called convex if for all x, y ∈ X
and all λ ∈ [0, 1] we have

λx+ (1− λ)y ∈ X.

Examples:

� the empty set ∅,

� the whole space A,

� singletons {x},

� affine subspaces,

� open or closed affine half-spaces,

� open or closed norm balls x+ rBo
1 , x+ rB1 around arbitrary points.

Here open and closed affine half-spaces are sets of the form {x ∈ A | a(x) < b} and {x ∈ A | a(x) ≤ b},
respectively, where a is a non-constant linear functional on A and b ∈ R.

4.1 Convex hull

Definition 4.2. Let x1, . . . , xk be points in an affine space A. Then
∑k

i=1 λixi is called a convex combination

of the points x1, . . . , xk if
∑k

i=1 λi = 1 and λi ≥ 0, i = 1, . . . , k.
The convex hull of a subset X ⊂ A of an affine space is the set of all convex combinations of elements of X.

It is denoted by convX.

Lemma 4.3. A set X is convex if and only if it equals its convex hull.

Proof. Let X = convX. Then, in particular, convex combinations of any two elements of X belong to X. Hence
X is convex.

Let X be convex. We show by induction on k that a convex combination of k elements of X is in X. The
definition of convexity yields the base of the induction for k = 2. Suppose we have proven that any convex
combination of k−1 elements of X is in X. Let x1, . . . , xk ∈ X and let x =

∑k
i=1 λixi be a convex combination.

If any of the coefficients λi vanishes, then x is actually a convex combination of strictly less than k elements
and is in X by the induction hypothesis. Assume λi > 0 for all i = 1, . . . , k. Then we have

x =

k−1∑
i=1

λixi + λkxk =

(
k−1∑
i=1

λi

)
k−1∑
i=1

λi∑k−1
j=1 λj

xi + λkxk = (1− λk)y + λkxk.
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Here y =
∑k−1

i=1
λi∑k−1

j=1 λj
xi is a convex combination of k − 1 elements of X and is hence in X. The point x has

then been represented as convex combination of two elements of X and is hence also in X.

The following assertion follows immediately from Definition 4.1.

Lemma 4.4. Arbitrary intersections of convex sets are convex.

Corollary 4.5. The convex hull of a set X is the smallest convex set which contains X, namely the intersection
of all convex sets containing X.

Proof. Since convex combinations of convex combinations are again convex combinations of the original points,
the convex hull of X is equal to its own convex hull. By Lemma 4.3 it is hence convex. On the other hand, any
convex set Y containing X must contain at least the convex hull of X, because Y ⊃ X implies Y = convY ⊃
convX.

Further examples of convex sets:

� polytopes (convex hulls of a finite set of points),

� polyhedra (finite intersections of closed affine half-spaces),

� simplices (convex hull of an affinely independent set of points).

4.2 Operations preserving convexity

We now consider more operations which preserve convexity.

Definition 4.6. Let X,Y be subsets of a vector space. The set

X + Y := {x+ y |x ∈ X, y ∈ Y }

is called Minkowski sum of X,Y .
This definition can be extended to the case where one of the sets X,Y is a subset of an affine space and the

other a subset of the underlying vector space.

The following assertions follow easily from the definition of convexity.

� the Minkowski sum of convex sets is convex,

� images of convex sets under affine maps are convex,

� pre-images of convex sets under affine maps are convex,

� the interior Xo of a convex set X is convex,

� the relative interior ri X of a convex set X is convex,

� the closure cl X of a convex set X is convex.

We now come to the interplay between convexity and topology.

Lemma 4.7. Let X ̸= ∅ be convex. Then ri X ̸= ∅.
For non-convex sets this is in general not the case (consider X = Q ⊂ R, then ri X = ∅).

Proof. The affine hull affX possesses an affine basis of points in X. To construct such a basis, pick an arbitrary
point x1 ∈ X. If aff {x1} = affX, then {x1} is an affine basis of affX. If aff {x1} ̸= affX, then there exists a
point x2 ∈ X \ aff {x1}. This point x2 is affinely independent of x1. We now repeat the process by comparing
aff {x1, x2} with affX and adjoin another affinely independent point x3 ∈ X if these affine hulls are not equal.
Obviously the affine hulls become equal after dim affX + 1 steps.
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Figure 5: Proof of Lemma 4.8. Radii are shown in italic.

Let hence x1, . . . , xk ∈ X form an affine basis of the affine hull of X. Then the simplex Σ = conv{x1, . . . , xk}
is a subset of X, and the relative interior of Σ is given by the set

ri Σ =

{
k∑

i=1

λixi |λi > 0,

k∑
i=1

λi = 1

}
.

Since affΣ = affX, any point in ri Σ is also in ri X.

We now need an auxiliary lemma.

Lemma 4.8. Let X be a convex set, let x ∈ ri X and y ∈ clX. Then the half-open segment [x, y) = {λx+ (1−
λ)y |λ ∈ (0, 1]} is a subset of ri X.

Proof. By definition there exists r > 0 such that (x+ rB1) ∩ affX ⊂ X. Let λ ∈ (0, 1] and z = λx+ (1− λ)y.
Set ρ = λr

1+λ . Since y ∈ clX, there exists w ∈ X such that ||y − w|| < ρ.
Set u = x+w−y. Then u ∈ affX as an affine combination of points in affX. Moreover, ||u−x|| = ||w−y|| < r.

Hence (u+ (r − ||u− x||)B1) ∩ affX ⊂ (x+ rB1) ∩ affX ⊂ X. We then get

λ[(u+ (r − ||u− x||)B1) ∩ affX] + (1− λ)w = [z + w − y + λ(r − ||y − w||)B1] ∩ affX ⊂ X

by the convexity of X. But

z + w − y + λ(r − ||y − w||)B1 ⊃ z + (λ(r − ||y − w||)− ||y − w||)B1

and λ(r− ||y−w||)− ||y−w|| = (1+λ)(ρ− ||y−w||) > 0. Therefore (z+(1+λ)(ρ− ||y−w||)B1)∩ affX ⊂ X,
and z ∈ ri X.

This will allow us to show that for convex sets the relative interior and the closure can be obtained from
each other.

Lemma 4.9. Let X be a convex set. Then cl ri X = clX and ri clX = ri X.

Proof. Clearly cl ri X ⊂ clX and ri clX ⊃ ri X.
Let y ∈ clX. Then X ̸= ∅ and there exists a point x ∈ ri X. It follows that [x, y) ⊂ ri X, and hence

y ∈ cl ri X.
Let now z ∈ ri clX. Then X ̸= ∅ and there exists x ∈ ri X. Further there exists ε > 0 such that

(z + εB1) ∩ affX ⊂ clX. We have [x, z] ⊂ affX, and there exists y ∈ (z + εB1) ∩ affX such that y lies on the
line through x and z and such that z ∈ [x, y). But then z ∈ ri X by Lemma 4.8.
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